Menoufiya University
Faculty of Engineering
Shebin El-Kom
First Semester Final Exam Academic Year: 2015-2016
Date: 10/1/2016

Year: $2^{\text {nd }}$ year
Department:Prod. Engineering
Subject: Theory of Machines
Course Code:PRE213
Time Allowed: 3 hours
Full Mark : 100 marks

Assume any required data and use neat sketches

Solve All Questions:

Question (1) (25 Marks)

Data: Offset C-S mechanism and offset radial cam-rolier follower mechanism in condition that,
$r_{2}=3 \mathrm{e}=0.5 \mathrm{R}_{3}=3 \mathrm{~cm}, \theta_{1}=0.5 \pi$ for the $1^{\text {st }}$ mechanism and that, $r_{b}=2 e=4 r_{f}=(4 / 3) L=4 \mathrm{~cm}, \omega=3.14 \mathrm{rad} / \mathrm{s}$ (R.H.D.), time of stroke $t_{r}=t_{1}=1$ sec. for the $2^{\text {nd }}$ mechanism.

Req: 1. Compare between these mechanisms.
2. Find $H_{0}, H_{\text {max }}, T_{R}$ and ϕ or γ for each mechanism.
3. Draw the cam profile if $\mathrm{S}_{\mathrm{f}}=0.5 \mathrm{~L}[1-\cos (\pi \theta / \beta)]$

Question (2) (25 Marks)

(A) Construct C-R and C-C mechanisms so that $\gamma_{\min }=45^{\circ}$ and $r_{4}=8 \mathrm{~cm}$. Compare between these mechanisms.
(B) Data: In fig. $1 \mathrm{O}_{2} \mathrm{~A}=15 \mathrm{~cm}, \mathrm{O}_{2} \mathrm{O}_{4}=24 \mathrm{~cm}, \mathrm{O}_{4} \mathrm{C}=16.5 \mathrm{~cm}, \mathrm{CD}=43$ cm and $\omega_{\text {in }}=$ const. $=2.5 \mathrm{rad} / \mathrm{s}$ (R.H.D.)

Req: 1. Is this mechanism? Why? What is the mechanism name? why?
2. Find S_{t} of the ram (slider) D, max. length of $O_{4} A$ and time ratio.
3. Compute $S_{d}, F_{i d}, v_{\text {rub }}$ at pin joint C and T_{d} due to $F_{\text {icd }}$ at crank $\left(\mathrm{O}_{2} \mathrm{~A}\right)$ position $\theta_{2}=315^{\circ}$.

Fig. 1

Question (3) (25 Marks)

Fig. 2 shows some details of a compound epicyclic gear drive where I is the driving or input shaft and O is the driven or output shaft which carries two arms A and B rigidly fixed to $i t$. The arms carry planet wheels C and D which mesh with annular wheels P and Q and the sun-wheels X and Y. The sun wheel X is a part of Q. Wheels Y and Z are fixed to the shaft $I . Z$ engages with a planet wheel E carried on Q and this planet wheel engages the fixed annular wheel R. The numbers of teeth on the wheels are :
$P=144, Q=120, E=45, C=54, Y=24$ and $Z=30$ teeth.
The driving shaft I makes $\mathbf{1 5 0 0} \mathbf{~ r p m ~ C o u n t e r c l o c k w i s e . ~}$

Calculate:

1. The number of teeth of gears X, D and R.
2. The speed and direction of rotation of the driven shaft O and the wheel P.

Fig. 2

Question (4) (25 Marks)

A, B, C and D are four masses carried by a rotating shaft at radii 100 mm , $150 \mathrm{~mm}, 150 \mathrm{~mm}$ and 200 mm respectively. The planes in which the masses rotate are spaced at 500 mm apart and the magnitude of the masses B, C and D are $9 \mathrm{~kg}, 5 \mathrm{~kg}$ and 4 kg respectively.
Find the required mass A and the relative angular settings of the four masses so that the shaft shall be in complete balance.

